Molybdenum Dilsufide Outperforms Graphene in Water Desalination

When the World Economic Forum published its Global Risks Report this year, it identified the number one greatest risk facing the world as the looming water shortage. While there are both new and old technology solutions for desalinating water that could address this water shortfall,  they have remained highly energy intensive, rendering many of them out of reach for most regions outside of the oil-rich Persian Gulf.
Scientists have been looking to graphene in the search for ways of easing the energy demands of water desalination. Here the material acts a porous membrane that allows water through but blocks the flow of salt ions—a pressure-driven process called reverse osmosis. Researchers at the University of Illinois recently took a look at that material’s two-dimensional cousin molybdenum disulfide (MoS2) in that role and believe that it may remove salt much better.
In research published in the journal Nature Communications,  the Illinois scientists modeled various thin-film membrane materials and found that MoS2 was the most efficient, filtering up to 70 percent more water than graphene membranes.
molybdenum disulfide
 
You are here: Home Molybdenum's News Molybdenum Dilsufide Outperforms Graphene in Water Desalination