The Development of Molybdenum

Molybdenite—the principal ore from which molybdenum is now extracted—was previously known as molybdena. Molybdena was confused with and often utilized as though it were graphite. Like graphite, molybdenite can be used to blacken a surface or as a solid lubricant. Even when molybdena was distinguishable from graphite, it was still confused with the common lead ore PbS (now called galena); the name comes from Ancient Greek Μ?λυβδο? molybdos, meaning lead.(The Greek word itself has been proposed as a loanword from Anatolian Luvian and Lydian languages).

Although apparent deliberate alloying of molybdenum with steel in one 14th-century Japanese sword (mfd. ca. 1330) has been reported, that art was never employed widely and was later lost. In the West in 1754, Bengt Andersson Qvist examined molybdenite and determined that it did not contain lead, and thus was not the same as galena.

By 1778 Swedish chemist Carl Wilhelm Scheele stated firmly that molybdena was (indeed) not galena nor graphite. Instead, Scheele went further and correctly proposed that molybdena was an ore of a distinct new element, named molybdenum for the mineral in which it resided, and from which it might be isolated. Peter Jacob Hjelm successfully isolated molybdenum by using carbon and linseed oil in 1781.

For about a century after its isolation, molybdenum had no industrial use, owing to its relative scarcity, difficulty extracting the pure metal, and the immaturity of appropriate metallurgical techniques. Early molybdenum steel alloys showed great promise in their increased hardness, but efforts to manufacture them on a large scale were hampered by inconsistent results and a tendency toward brittleness and recrystallization. In 1906, William D. Coolidge filed a patent for rendering molybdenum ductile, leading to its use as a heating element for high-temperature furnaces and as a support for tungsten-filament light bulbs; oxide formation and degradation require that molybdenum be physically sealed or held in an inert gas. In 1913, Frank E. Elmore developed a flotation process to recover molybdenite from ores; flotation remains the primary isolation process.

During the first World War, demand for molybdenum spiked; it was used both in armor plating and as a substitute for tungsten in high speed steels. Some British tanks were protected by 75 mm (3 in) manganese steel plating, but this proved to be ineffective. The manganese steel plates were replaced with 25 mm (1 in) molybdenum-steel plating allowing for higher speed, greater maneuverability, and better protection. The Germans also used molybdenum-doped steel for heavy artillery. This was because traditional steel melted at the heat produced by enough gunpowder to launch a one ton shell.[30] After the war, demand plummeted until metallurgical advances allowed extensive development of peacetime applications. In World War II, molybdenum again saw strategic importance as a substitute for tungsten in steel alloys.

 

More molybdenum product: http://www.molybdenum.com.cn
Tel: 0592-5129696 Fax:0592-5129797
E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Tungsten & Molybdenum Information Bank: http://i.chinatungsten.com
Tungsten News & Tungsten Prices, 3G Version: http://3g.chinatungsten.com
Tungsten News & Tungsten Price: http://www.chinatungsten.com



 

 

 

You are here: Home Molybdenum knowledge The Development of Molybdenum